Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1999 Printed in Austria

Sulfenylation of Heterocyclic 1,3-Dicarbonyl Compounds

Barbara Schnell and Thomas Kappe*

Institute of Organic Chemistry, Karl-Franzens University of Graz, A-8010 Graz, Austria

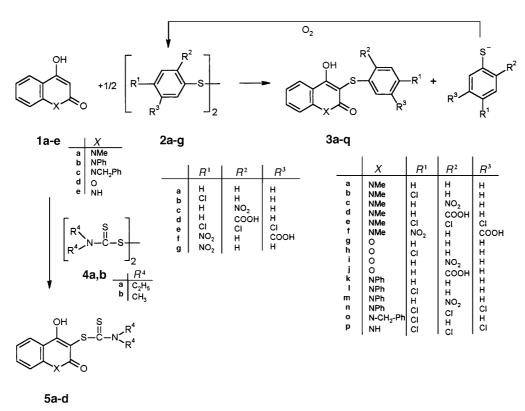
Summary. Anions of heteroaromatic 1,3-dicarbonyl compounds, such as 4-hydoxy-2-quinolones and 4-hydroxy-coumarins, react in *DMF* in the presence of potassium carbonate with diaryl disulfides to yield 3-arylsulfenyl derivatives. The arylthiolate anions formed in this reaction can be oxidized by air to yield the starting diaryl disulfides again. Tetraalkylthiuram disulfides react in the same manner to yield 3-dialkylaminothiocarbonylthio derivatives of the title compounds. Oxidation of the arylthioderivatives with hydrogen peroxide in sodium hydroxide solution usually leads to sulfoxides, whereas oxidation with peracetic acid affords sulfones.

Keywords. 3-Arylthio-4-hydroxy-2(1*H*)-quinolones; 3-Arylthio-4-hydroxy-coumarins; 3-Dialkylaminothiocarbonylthio-2(1*H*)-quinolones; 3-Dialkylaminothiocarbonylthio-4-hydroxy-coumarins; Sulfoxides; Sulfones.

Sulfenylierung heterocyclischer 1,3-Dicarbonylverbindungen

Zusammenfassung. Anionen von heteroaromatischen 1,3-Dicarbonylverbindungen, wie etwa von 4-Hydroxy-2(1*H*)-chinolonen und 4-Hydroxy-cumarinen, reagieren mit Diaryldisulfiden in *DMF* in Anwesenheit von Kaliumcarbonat zu 3-Arylthioderivaten. Die bei dieser Reaktion anfallenden Thiophenolatanionen können durch Oxidation mit Luft in die Diaryldisulfide zurückgeführt werden und erneut in die Reaktion eingreifen. Tetraalkylthiuramdisulfide reagieren in ähnlicher Weise mit den Titelverbindungen unter Ausbildung von 3-Dialkylaminthiocarbonylthio-4-hydroxy-2(1*H*)chinolonen und -cumarinen. Oxidation der 3-Arylthio-4-hydroxy-2-chinolone und -cumarine mit Wasserstoffperoxid in Natronlauge führt im allgemeinen zu Sulfoxiden, während die Oxidation mit Peressigsäure die entsprechenden Sulfone liefert.

Introduction

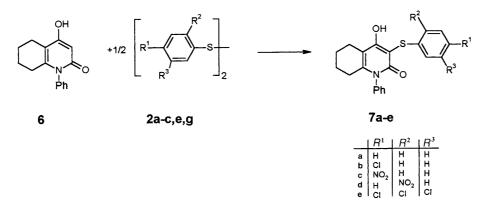

The direct sulfenylation of aryl compounds is an important subject in synthetic organic chemistry [1, 2]. Disulfides behave as electrophiles, and non-activated aromatic compounds can be sulfenylated using *Lewis* acid catalysis (for instance $SbCl_5/AgSbF_6$) [3]. Sulfenylchlorides (*RSCl*) [4] can be used in the same way as well as *R*-thio-*p*-toluene-sulfonates (*p*-tolyl-SO₂-S*R*) [5]. However, the latter reaction proceeds best with phenolic substrates under basic conditions [5]. Some 3-alkylthio-4-hydroxy-2-pyrones are effective HIV-protease inhibitors [6, 7, 8], and

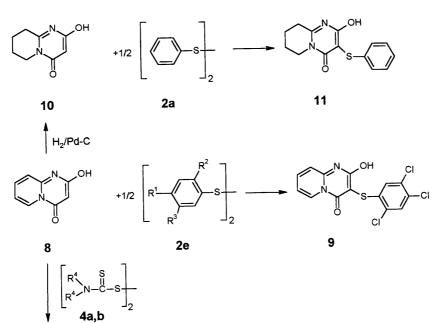
^{*} Corresponding author

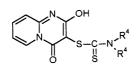
other 3-alkylthio-4-hydoxy-2-pyrimidone derivatives show antiinflammatory activity [5]. This and the known fungicidal and antiseptic activity of disulfiram (Antabus, **4a**) [9] and thiuram (tetramethythiuram disulfide, *TMTD*, **4b**) [10] prompted our research in this field. Preliminary results have been published as a lecture abstract [11].

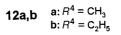
Results and Discussion

The results of a preliminary experiment by stirring one equivalent of 4-hydroxy-lmethyl-(1*H*)-quinolone (1a) with one equivalent of diphenlyldisulfide (2a) overnight at 95°C in *DMF* in an open *Erlenmeyer* flask were as follows: quenching with water resulted in a voluminous precipitate of the starting disulfide, suggesting that the anticipated reaction did not work, at least not with an appreciable yield. Surprisingly, acidification of the remaining solution produced again a precipitate which proved to be the desired compound **3a**. Obviously, the thiophenolate anion resulting from the reaction of 1 with diphenyldisulfide 2 was oxidized by oxygen back to the disulfide **2**. Therefore, for preparations on a larger scale we reduced the

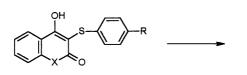


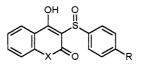

Scheme 1

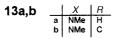

employed disulfide nearly by 50% and bubbled air through the reaction mixture. The thioethers **3a–p** were obtained by this simple procedure in good to excellent yields. Aliphatic thioethers of this type cannot be obtained by this method. Obviously, the corresponding aliphatic disulfides are not electrophilic enough. However, aliphatic thioethers are available by the reaction of 3-chloro-4-hydroxy-2-quinolones or 3-chloro-4-hydroxy-cumarins or from their corresponding iodonium ylides [11–13]. On the other hand, tetraalkylthiuram disulfides (**4a**,**b**) are sufficiently electrophilic and produce good yields of 3-dialkylaminothiocarbonylthio-4-hydroxy-2-quinolones (**5a**,**c**,**d**) and 4-hydroxy-coumarins (**5b**) in the reaction system DMF/K_2CO_3 . However, equimolar amounts of the reagents **4** are required; oxidation of the dialkylaminothiocarbamate anions is not possible under these reaction conditions.

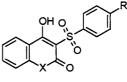

As already mentioned, the dialkylaminothiocarbonylthio derivatives of type 5 can be obtained by two alternative routes: the starting materials 1 are converted to their 3-chloro derivatives (usually a two-step procedure) or their 3-phenyliodonium ylides. Both species react with sodium dialkylaminodithiocarbamates to compounds 5. The thioethers 3 can be obtained in a similar fashion by using thiophenolate anions [11, 12]. However, these methods cannot compete with the simplicity of the preparations presented here. Most of the aromatic disulfides 2 used in this study are commercially available; if not, they can quantitatively be obtained by oxidizing alkaline solutions of the corresponding thiophenolates with hydrogen peroxide. The thiuram disulfides 4 can be obtained by oxidizing solutions prepared from the secondary amine, sodium hydroxide, and carbon disulfide with hydrogen peroxide.

4-Hydroxy-1-phenyl-tetrahydro-2-quinolone (6) can readily and on a large scale be prepared from cyclohexanoneanil and malonic acid derivatives [14, 15]. It served also as a good substrate for the reaction with diaryldisulfides 2 yielding 3-arylthioethers **7a–c**. *Tschitschibabin*'s malonyl- α -aminopyridine [16] (8) is one of the best studied enolized aromatic 1,3-dicarbonyl compounds. It exists in the solid state and in aqueous solution in a tautomeric betaine structure [17, 18]. We studied its reaction with **2e** leading to the sulfide **9** in 85% yield. With thiuram disulfides **4** thiolation to the dithioamides **12a,b** was achieved. The catalytic hydrogenation of

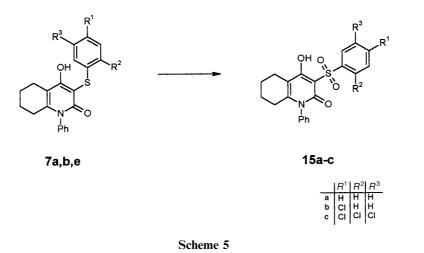





Scheme 3



3a,b,g,h,l



14a-d

	X	R
а	NMe	CI
a b	0	н
c d	0	CI
d	N-Ph	CI
		-

Scheme 4

Sulfenylation of Heterocyclic Dicarbonyls

8 to the bicyclic hydroxy-pyrimidon **10** has recently been described [19]. Treatment of this compound with diphenyldisulfide (2a) under the usual condition gives **11** in 93% yield.

Some oxidation reactions of 3-arylthioethers of 4-hydroxy-2-quinolones and coumarins are summarized in Schemes 4 and 5. Careful reduction of thioethers **3** with hydrogen peroxide in sodium hydroxide solution leads to sulfoxides as *e.g.* **13a,b**, whereas oxidation with peracetic acid in acetic acid gives sulfones **14a–d** without complication. Attempts to obtain sulfoxides from tetrahydroquinolones **7** failed; even under mild conditions (room temperature, no excess of hydrogen peroxide) the sulfones **15** are formed.

Experimental

Melting points were obtained on a Gallenkamp melting point apparatus, Mod. MFB-595 (open capillary tubes); IR spectra were recorded on a Perkin-Elmer 298 (KBr-pellets), ¹H NMR spectra on a Varian Gemini 200 instrument (*TMS* as internal standard, δ -values in ppm, *DMSO*-d₆ as solvent unless otherwise stated). Elemental analyses were performed on a C,H,N-Automat Carlo Erba 1106; they agreed favourably with the calculated values (±0.4%).

General procedure for the synthesis of 4-hydroxy-3-phenylthio-2(1H)-quinolones and -coumarins **3a–p**,4-*hydroxy-3-phenylthio-1-phenyl-5*,6,7,8-*tetrahydro-2(1H)-quinolones* **7a–e**, *and 2-hydroxy-3-phenylthio-6*,7,8,9-*tetrahydro-pyrido[1,2-a]pyrimidin-4-one* **11**

A mixture of 4-hydroxy-2(1*H*)-quinolones **1a–c**, 4-hydroxycoumarin **1d** or 4-hydroxy-1-phenyl-5,6,7,8-tetrahydro-2(1*H*)-quinolone **6** (20 mmol), the corresponding disulfide **2a–f** (10.5 mmol), and potassium carbonate (30 mmol) was heated in *DMF* (50 cm³ for 5 h at 90–95°C bath temperature while air was bubbled through the mixture. After cooling water (40 cm³) was added and the mixture was stirred for 15 minutes. After filtration the product was precipitated by acidification with diluted hydrochloric acid, filtered by suction, dried, and recrystallized from an appropriate solvent.

4-Hydroxy-1-methyl-3-phenylthio-2(1H)-quinolone (3a, C₁₆H₁₃NO₂S)

Prepared from **1a** and **2a** in 75% yield; m.p.: 230–232°C (ethanol); IR: $\nu = 3280-2700$ wb, 1610 s, 1585 m, 1550 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.62 (s, 3H, NCH₃), 7.08–7.38 (m, 6H,

aryl-H), 7.58 (d, J = 8 Hz, 1H, aryl-H), 7.68–7.80 (t, J = 8 Hz, 1H, aryl-H), 8.05 (dd, J = 7 and 1.5 Hz, 1H, 5-H), 11.20 (s, 1H, OH) ppm.

3-(4-Chlorophenylthio)-4-hydroxy-1-methyl-2(1H)-quinolone (3b; C₁₆H₁₂ClNO₂S)

Prepared from **1a** and **2b** in 74% yield; m.p.: 205–208°C (ethanol); IR: $\nu = 3300-2700$ mb, 1615 s, 1585 s, 1555 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.62 (s, 3H, NCH₃), 7.17 (d, J = 8 Hz, 2H, aryl-H), 7.32 (m, 3H, aryl-H), 7.57 (d, J = 8 Hz, 1H, aryl-H), 7.68–7.78 (m, 1H, aryl-H), 8.08 (dd, J = 7 and 1.5 Hz, 1H, 5-H) ppm.

4-Hydroxy-1-methyl-3-(2-nitrophenylthio)-2(1H)-quinolone (3c; C₁₆H₁₂N₂O₄S)

Prepared from **1a** and **2c** in 64% yield; m.p.: 250°C with dec. (acetic acid); IR: $\nu = 3300-2800$ mb, 1620 s, 1585 m, 1570 m, 1514 s cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.64 (s, 3H, NCH₃), 7.09 (dd, J = 7 and 1.5 Hz, 1H, aryl-H), 7.30–7.42 (m, 2H, aryl-H), 7.50–7.62 (m, 2H, aryl-H), 7.72–7.82 (m, 1H, aryl-H), 8.08 (dd, J = 7 and 1.5 Hz, 1H, aryl-H), 8.28 (dd, J = 7 and 1.5 Hz, 1H, aryl-H) ppm.

3-(2-Carboxyphenylthio)-4-hydroxy-1-methyl-2(1H)-quinolone (**3d**; C₁₇H₁₃NO₄S)

Prepared from **1a** and **2d** in 87% yield; m.p.: 274–276°C (toluene); IR: $\nu = 3290$ m, 3060–2800 wb, 1700 s, 1600 s, 1575 s cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.62 (s, 3H, NCH₃), 6.85 (d, J = 8 Hz, 1H, aryl-H), 7.13–7.40 (m, 3H,aryl-H), 7.57 (d, J = 8 Hz, 1H, aryl-H), 7.69–7.79 (t, J = 8 Hz, 1H, aryl-H), 7.92–8.08 (m, 2H, aryl-H), 11.12 (s, 1H, OH) ppm.

4-Hydroxy-1-methyl-3-(2,4,5-trichlorophenylthio)-2(1H)-quinolone (3e; C₁₆H₁₀Cl₃NO₂S)

Prepared from **1a** and **2e** in 82% yield; m.p.: 304–306°C (*DMF*); IR: $\nu = 3300-2500$ wb, 1610 s, 1580 s, 1545 w, 1500 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.68 (s, 3H, NCH₃), 6.88 (s, 1H, aryl-H), 7.37 (t, J = 8 Hz, 1H, aryl-H), 7.60 (d, J = 8 Hz, 1H, aryl-H), 7.72–7.82 (m, 1H, aryl-H), 7.91 (s, 1H, aryl-H), 8.09 (d, J = 8 Hz, 1H, aryl-H) ppm.

3-(3-Carboxy-4-nitrophenylthio)-4-hydroxy-1-methyl-2(1H)-quinolone (3f; C₁₇H₁₂N₂O₆S)

Prepared from **1a** and **2f** in 86% yield; m.p.: $301-304^{\circ}$ C (methanol); IR: $\nu = 3300-2500$ wb, 1625 s, 1615 s, 1575 w, 1545 m, 1490 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.65 (s, 3H, NCH₃), 7.28–7.40 (m, 2H, aryl-H), 7.46 (s, 1H, aryl-H), 7.59 (d, J = 8.5 Hz, 1H, aryl-H), 7.72–7.82 (m, 1H, aryl-H), 7.93 (d, J = 8.5 Hz 1H, aryl-H), 8.10 (d, J = 8 Hz, 1H, aryl-H) ppm.

4-Hydroxy-3-phenylthio-coumarin (**3g**; C₁₅H₁₀O₃S)

Prepared from **1d** and **2a** in 75% yield; m.p.: 188–189°C (ethanol); IR: $\nu = 3320-2700$ wb, 1678 s, 1605 s, 1545 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 7.12–7.49 (m, 7H, aryl-H), 7.68–7.78 (m, 1H, aryl-H), 7.98 (d, J = 8 Hz, 5-H) ppm.

3-(4-Chlorophenylthio)-4-hydroxy-coumarin (3h; C₁₅H₉ClO₃S)

Prepared from **1d** and **2b** in 77% yield; m.p.: 192–195°C (toluene); IR: $\nu = 3320-2940$ mb, 1695 s, 1605 s, 1540 s cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 7.20–7.48 (m, 6H, aryl-H), 7.70–7.80 (m, 1H, aryl-H), 7.99 (dd J = 7 and 1.5 Hz, 1H, 5-H) ppm.

Sulfenylation of Heterocyclic Dicarbonyls

4-Hydroxy-3-(2-nitrophenylthio)-coumarin (**3i**; C₁₅H₉NO₅S)

Prepared from 1d and 2c in 57% yield; m.p.: 260°C with dec. (acetic acid).

3-(2-Carboxyphenylthio)-4-hydroxy-coumarin (3j; C₁₆H₁₀O₅S)

Prepared from **1d** and **2d** in 91% yield; m.p.: 237–240°C (toluene); IR: $\nu = 3360-2700$ wb, 1685 s, 1605 s, 1530 s cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 7.06 (d, J = 8 Hz, 1H, aryl-H), 7.22 (t, J = 8 Hz, 1H, aryl-H), 7.35–7.51 (m, 3H, aryl-H), 7.69–7.80 (m, 1H, aryl-H), 7.92–8.03 (d, J = 8 Hz, 2H, aryl-H) ppm.

4-Hydroxy-1-phenyl-3-phenylthio-2(1H)-quinolone (3k; C₂₁H₁₅NO₂S)

Prepared from **1b** and **2a** in 49% yield; m.p.: 180–183°C (toluene); IR: $\nu = 3330$ m, 3050 w, 1655 s, 1615 s, 1590 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 6.68 (d, J = 8 Hz, 1H, aryl-H), 7.12–7.39 (m, 8H, aryl-H), 7.49–7.69 (m, 4H, aryl-H), 8.12 (dd, J = 7 and 1.5 Hz, 1H, 5-H) ppm.

3-(4-Chlorophenylthio)-4-hydroxy-1-phenyl-2(1H)-quinoione (3l; C₂₁H₁₄ClNO₂S)

Prepared from **1b** and **2b** in 41% yield; m.p.: 207–210°C (toluene); IR: $\nu = 3360-2800$ mb, 1630 s, 1610 s, 1590 s, 1550 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 6.56 (d, J = 8 Hz, 1H, aryl-H), 7.18–7.38 (m, 7H, aryl-H), 7.48–7.68 (m, 4H, aryl-H), 8.10 (dd, J = 7 and 1.5 Hz, 1H, 5-H) ppm.

4-Hydroxy-3-(2-nitrophenylthio)-1-phenyl-2(1H)-quinolone (**3m**; C₂₁H₁₄N₂O₄S)

Prepared from **1b** and **2c** in 70% yield; m.p.: 265–268°C (acetic acid); IR: $\nu = 3300-2700$ mb, 1620 s, 1590 w, 1570 m, 1510 s cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 6.62 (dd, J = 8 and 2 Hz, 1H, aryl-H), 7.29–7.72 (m, 10H, aryl-H), 8.07 (dd, J = 7 and 1.5 Hz, 1H, aryl-H), 8.29 (dd, J = 7 and 1.5 Hz, 1H, aryl-H) ppm.

4-Hydroxy-1-phenyl-3(2,4,5-trichlorophenylthio)-2(1H)-quinolone (3n; C₂₁H₁₂Cl₃NO₂S)

Prepared from **1b** and **2e** in 82% yield; m.p.: $232-234^{\circ}$ C (acetic acid); IR: $\nu = 3300-2700$ wb, 1625 s, 1615 s, 1575 w, 1545 m, 1490 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 6.60 (d, *J* = 7.5 Hz, 1H, aryl-H), 7.10 (s, 1H, aryl-H), 7.28–7.40 (m, 3H, aryl-H), 7.48–7.68 (m, 4H, aryl-H), 7.90 (s, 1H, aryl-H), 8.12 (d, *J* = 7 Hz, 1H, aryl-H) ppm.

1-Benzyl-3-(4-chlorophenylthio)-4-hydroxy-2(1H)-quinolone (30; C₂₂H₁₆ClNO₂S)

Prepared from 1c and 2b in 50% yield; m.p.: 166-170°C (toluene).

4-Hydroxy-3-(2,4,5-trichlorophenylthio)-2(1H)-quinolone (**3p**; C₁₅H₈Cl₃NO₂S)

Prepared from **1e** and **2e** in 75% yield; m.p.: 316–317°C (*DMF*); IR: $\nu = 3300-2500$ wb, 1640 s, 1600 s, 1580 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 6.83 (s, 1H, aryl-H), 7.20–7.40 (m, 3H, aryl-H), 7.58–7.70 (m, 1H, aryl-H), 7.98 (dd, J = 7.5 and 1 Hz, 1H, 5-H), 11.72 (sb, 1H, NH) ppm.

4-Hydroxy-1-phenyl-3-phenylthio-5,6,7,8-tetrahydro-2(1H)-quinolone (7a; C₂₁H₁₉NO₂S)

Prepared from **6** and **2a** in 72% yield; m.p.: 163–165°C (toluene/cyclohexane); IR: $\nu = 3380-2600$ mb, 1630 s, 1600 w, 1585 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 1.62 (s, 4H, 6-H, 7-H), 2.08 (s, 2H, 8-H), 2.50 (s, 2H, 5-H), 7.100–7.58 (m, 10H, aryl-H), 10.38 (s, 1H, OH) ppm.

3-(4-Chlorophenylthio)-4-hydroxy-1-phenyl-5,6,7,8-tetrahydro-2(1H)-quinolone (**7b**; C₂₁H₁₈ClNO₂S)

Prepared from **6** and **2b** in 54% yield; m.p.: 227–228°C (toluene); IR: $\nu = 3320-3120$ mb, 2939 m, 1642 s, 1540 s, 1470 s cm⁻¹; ¹H NMR (200 MHz, δ ,*DMSO*-d₆): 1.61 (s, 4H, 6-H, 7-H), 2.05 (s, 2H, 8-H), 2.47 (s, 2H, 5-H), 7.12 (d, J = 8 Hz, 2H, phenyl-3-H, 5-H), 7.22 (dd, J = 7 and 1.5 Hz, 2H, aryl-H), 7.33 (d, J = 8 Hz, 2H, phenyl-2-H, 6-H), 7.41–7.53 (m, 3H, aryl-H), 10.48 (s, 1H, OH) ppm.

4-Hydroxy-3-(4-nitrophenylthio)-1-phenyl-5,6,7,8-tetrahydro-2(1H)-quinolone (7c; C₂₁H₁₈N₂O₄S)

Prepared from **6** and **2g** in 51% yield; m.p.: 251–255°C (toluene); IR: $\nu = 3080-2800$ wb, 1635 s, 1580 w, 1540 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 1.62 (s, 4H, 6-H, 7-H), 2.06 (s, 2H, 8-H), 2.42 (s, 2H, 5-H), 7.15–7.32 (m, 5H aryl-H), 7.42–7.58 (m, 3H, aryl-H), 8.13 (d, J = 8 Hz, 1H, aryl-H) ppm.

4-Hydroxy-3-(2-nitrophenylthio)-1-phenyl-5,6,7,8-tetrahydro-2(1H)-quinolone (7d; C₂₁H₁₈N₂O₄S)

Prepared from **6** and **2c** in 63% yield; m.p.: 247–249°C (toluene); IR: $\nu = 3140-2805$ wb, 1645 s, 1605 w, 1580 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 1.64 (s, 4H, 6-H, 7-H), 2.10 (s, 2H, 8-H), 2.48 (s, 2H, 5-H), 7.12–7.68 (m, 8H, aryl-H), 8.25 (d, J = 8 Hz, 1H, aryl-H), 10.70 (s, 1H, OH) ppm.

4-*Hydroxy*-1-*pheny*l-3-(2,4,5-*trichloropheny*l*thio*)-5,6,7,8-*tetrahydro*-2(1*H*)-*quinolone* (**7e**; C₂₁H₁₆Cl₃NO₂S)

Prepared from **6** and **2e** in 68% yield; m.p.: 211–214°C (toluene); IR: $\nu = 3100-2800$ wb, 1645 s, 1620 s, 1590 w, 1565 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 1.60 (s, 4H, 6-H, 7-H), 2.05 (s, 2H, 8-H), 2.42 (s, 2H, 5-H), 6.40–6.64 (m, 2H, aryl-H), 7.83–7.93 (m, 2H, aryl-H), 8.16–8.23 (m, 2H, aryl-H), 8.38 (s, 1H, aryl-H) ppm.

2-Hydroxy-3-(2,4,5-trichlorophenylthio)-pyrido[1,2-a]pyrimidin-4-one (9; C₁₄H₇Cl₃N₂O₃S)

Prepared from 8 and 2e in 85% yield; m.p.: 296-297°C (methanol).

 $2-Hydroxy-3-phenylthio-6,7,8,9-tetrahydro-pyrido[1,2-a]pyrimidin-4-one~(\mathbf{11};~\mathbf{C}_{14}\mathbf{H}_{14}\mathbf{N}_{2}\mathbf{O}_{2}\mathbf{S})$

Prepared from **10** and **2a** in 93% yield; m.p.: 271–275°C (toluene); IR: $\nu = 3300-2650$ mb, 1685 s, 1595 w, 1535 s cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 1.72–1.95 (m, 4H, 7-H, 8-H), 2.86 (t, J = 7 Hz, 2H, 9-H), 3.75 (t, J = 7 Hz, 2H, 6-H), 7.00–7.28 (m, 5H aryl-H), 12.40 (s, 1H, OH) ppm.

3-Diethylaminothiocarbonylthio-4-hydroxy-1-methyl-2(1H)-quinolone (5a; C₁₅H₁₈N₂O₂S₂)

A mixture of 1.75 g **1a** (10 mmol), 3.26 g tetraethylthiuram disulfide (**4a**, 11 mmol), 2.76 g potassium carbonate (20 mmol), and 30 ml *DMF* was heated under stirring for 4 h at 90°C. After removing half of the solvent *in vacuo*, the solution was poured into ice-water. After standing for 3 h it was filtered and the filtrate slowly acidified with diluted hydrochloric acid. The resulting precipitate was filtered by suction.

Yield: 2.40 g (74%); m.p.: 148–152°C (ethanol); IR: $\nu = 3400-2800$ mb, 1630 s, 1600 s, 1550 s, 1500 w cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 1.20 (t, *J* = 7 Hz, 3H, CH₃), 1.40 (t, *J* = 7 Hz, 3H, CH₃), 3.59 (s, 3H, NCH₃), 3.86–4.02 (m, 4H, 2CH₂), 7.30 (t, *J* = 7 Hz, 1H, aryl-H), 7.52 (d, *J* = 8 Hz, 1H, aryl-H), 7.72 (d, *J* = 7 Hz, 1H, aryl-H), 8.02 (dd, *J* = 7 and 1.5 Hz, 1H, 5-H) ppm.

Sulfenylation of Heterocyclic Dicarbonyls

3-Dimethylaminothiocarbonylthio-4-hydroxy-coumarin (5b; C₁₄H₁₁NO₃S₂)

From 1.62 g **1d** (10 mmol) and 2.65 g **4b** (11 mmol) according to the preparation of **5a**; yield: 2.10 g (68%); m.p.: 170–173°C (ethanol); IR: $\nu = 3360-2700$ wb, 1685 s, 1610 s, 1555 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.49 (s, 3H, CH₃), 3.52 (s, 3H, CH₃), 7.37–7.48 (m, 2H, aryl-H), 7.70–7.80 (m, 1H, aryl-H), 7.98 (dd, J = 7.5 and 1 Hz, 1H, aryl-H) ppm.

3-Diethylaminothiocarbonylthio-4-hydroxy-1-phenyl-2(1H)-quinolone (5c; C₂₀H₂₀N₂O₂S₂)

From 2.37 g **1b** (10 mmol) and 3.26 g **4a** (11 mmol) according to the preparation of **5a**; yield: 1.92 g (50%); m.p.: 166–169°C (ethanol).

3-Dimethylaminothiocarbonylthio-4-hydroxy-1-phenyl-2(1H)-quinolone (5d; C₁₈H₁₆N₂O₂S₂)

From 2.37 g **1b** (10 mmol) and 2.65 g **4b** (11 mmol) according to the preparation of **5a**; yield: 1.99 g (56%); m.p.: 171–173°C (toluene); IR: $\nu = 3000-2500$ wb, 1630 s, 1610 s, 1590 m, 1550 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.48 (s, 3H, CH₃), 3.52 (s, 3H, CH₃), 6.64 (d, J = 8 Hz, 1H, aryl-H), 7.19–7.31 (m, 3H, aryl-H) 7.45–7.68 (m, 4H, aryl-H) 8.08 (dd, J = 7.5 and 1 Hz, 1H, aryl-H) ppm.

3-Diethylaminothiocarbonylthio-2-hydroxy-pyrido-[1,2-a]pyrimidin-4-one (**12a**; C₁₃H₁₅N₃O₂S₂)

From 1.62 g 8 (10 mmol) and 3.26 g 4a (11 mmol) according to the preparation of 5a; yield: 2.00 g (65%); m.p.: $250-252^{\circ}$ C (ethanol).

3-Dimethylaminothiocarbonylthio-2-hydroxy-pyrido[1,2-a[pyrimidin-4-one (12b; $C_{11}H_{11}N_3O_2S_2)$)

From 1.62 g **8** (10 mmol) and 2.65 g **4b** (11 mmol) according to the preparation of **5a**; yield: 1.95 g (70%); m.p.: 260–262°C (ethanol); IR: $\nu = 3000-2200$ wb, 1700 m, 1620 s, 1580 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.48 (s, 6H, 2xCH₃), 7.38–7.52 (m, 2H, aryl-H), 8.20–8.30 (m, 1H, aryl-H), 9.00 (d, J = 7 Hz, 1H, aryl-H), 12.60 (s, 1H, OH) ppm.

4-Hydroxy-1-methyl-3-phenylsulfinyl-2(1H)-quinolone (13a; C₁₆H₁₃NO₃S)

To a solution of 1.42 g **3a** (5 mmol) in 20 cm³ of 2 N sodium of hydroxide, 8 cm³ of hydrogen peroxide (30%) were added. After stirring overnight the product was precipitated by acidification with diluted hydrochloric acid.

Yield: 1.34 g (89%); m.p.: 175–176°C (ethanol); IR: $\nu = 1630$ s, 1595 w, 1565 m, 1080 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.52 (s, 3H, NCH₃), 7.32–7.43 (m, 1H, aryl-H), 7.52–7.84 (m, 5H, aryl-H), 7.92–8.00 (m, 2H, aryl-H), 8.10 (dd, J = 7 and 1.5 Hz, 1H, 5-H) ppm.

3-(4-Chlorophenylsulfinyl)-4-hydroxy-1-methyl-2(1H)-quinolone (13b; C₁₆H₁₂CINO₃S)

From 1.59 g **3b** (5 mmol) according to the preparation of **13a**; yield: 1.57 g (94%); m.p.: 183–185°C (toluene); IR: $\nu = 1625$ s, 1590 w, 1570 m, 1500 m, 1090 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.51 (s, 3H, NCH₃), 7.28–7.42 (m, 1H, aryl-H), 7.57 (d, J = 8 Hz, 1H, aryl-H), 7.68–7.82 (m, 3H, aryl-H), 7.92–8.04 (m, 3H, aryl-H) ppm.

3-(4-Chlorophenylsulfonyl)-4-hydroxy-1-methyl-2(1H)-quinolone (14a; C₁₆H₁₂ClNO₄S)

To a solution of 1.59 g **3b** (5 mmol) in 20 cm³ acetic acid, 3 cm³ of peracetic acid (40%) were added. After stirring for 90 min at 50°C the product was precipitated by acidification with 2 N HCl. Yield: 1.07 g (61%); m.p.: 214–218°C (toluene); IR: $\nu = 3280-2860$ mb, 1640 s, 1620 s, 1555 m, 1320 m, 1125 s cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 3.49 (s, 3H, NCH₃), 7.40 (t, J = 7 Hz, 1H, aryl-H), 7.58 (d, J = 8 Hz, 1H, aryl-H), 7.68–7.90 (m, 3H, aryl-H), 8.08–8.19 (m, 3H, aryl-H) ppm.

4-Hydroxy-3-phenylsulfonyl-coumarin (14b; C₁₅H₁₀O₅S)

From 1.35 g **3g** (5 mmol) according to the preparation of **14a**; yield: 1.24 g (82%); m.p.: 178–181°C (toluene); IR: $\nu = 3100-2860$ wb, 1725 s, 1615 s, 1605 s, 1550 s, 1330 m, 1130 s cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 4.92 (s, OH-H₂O-assoziation), 7.20–7.36 (m, 2H, aryl-H), 7.50–7.70 (m, 4H, aryl-H), 7.87–8.08 (m, 3H, aryl-H) ppm.

3-(4-Chlorophenylsulfonyl)4-hydroxy-coumarin (14c; C₁₅H₉ClO₅S)

A solution of 1.52 g **3h** (5 mmol) in 20 cm³ acetic acid and 3 cm³ of peracetic acid (40%) was stirred for 2 h at 50°C. After cooling to room temperature the formed precipitate was filtered by suction.

Yield: 1.30 g (77%); m.p.: 173–176°C (toluene); IR: $\nu = 3100-2940$ wb, 1715 s, 1615 s, 1602 s, 1545 s, 1335 s, 1135 s, cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 7.12–7.25 (m, 2H, aryl-H), 7.49–7.61 (m, 3H, aryl-H, phenyl 3-H, 5-H), 7.80 (dd, J = 7 and 1.5 Hz, 1H, aryl-H), 7.94 (d, J = 8 Hz, 2H, phenyl 2-H, 6-H) ppm.

3-(4-Chlorophenylsulfonyl)-4-hydroxy-1-phenyl-2(1H)-quinolone (14d; C₂₁H₁₄ClNO₄S)

To a solution of 1.90 g **3l** (5 mmol) in 20 cm³ acetic acids, 3 cm³ of peracetic acid (40%) were added. After stirring for 2 h at 50°C the product was precipitated by acidification with 2 N HCl. Vield: 1.80 g (87%): m p : 235, 237°C (toluene)

Yield: 1.80 g (87%); m.p.: 235–237°C (toluene).

4-Hydroxy-1-phenyl-3-phenylsulfonyl-5,6,7,8-tetrahydro-2(1H)-quinolone (15a; C₂₁H₁₉NO₄S)

a) Oxidation with hydrogen peroxide

To a mixture of 1.75 g **7a** (5 mmol) and sodium carbonate solution (1.0 g Na₂CO₃ in 20 cm³ of water), 2 *N* NaOH was added until a clear solution formed. Then, 12 cm³ of H₂O₂ (30%) were added, and after standing overnight the product was precipitated by acidification with 2 *N* HCl.

Yield: 1.65 g (86%).

b) Oxidation with peracetic acid

To a solution of 1.75 g **7a** (5 mmol) in 25 cm³ acetic acid, 3 cm³ of peracetic acid (40%) were added. After stirring for 2 h at 50°C the product was precipitated by acidification with 2 N HCl.

Yield: 1.63 g (86%); m.p.: 189–192°C (ethanol); IR: $\nu = 3060$ w, 2940 w, 1650 s, 1550 s, 1330 m, 1125 m cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 1.59 (s, 4H, 6-H, 7-H), 2.02 (s, 2H, 8-H), 2.50 (s, 2H, 5-H), 7.10–7.58 (m, 10H, aryl-H) ppm.

3-(4-Chlorophenylsulfonyl)-4-hydroxy-1-phenyl-5,6,7,8-tetrahydro-2(1H)-quinolone (15b; $C_{21}H_{18}CINO_4S$)

To a solution of 1.90 g **7b** (5 mmol) in 25 cm³ acetic acid, 3 cm³ of peracetic acid (40%) were added. After stirring for 90 min at 50°C the product was precipitated by acidification with 2 N HCl.

Yield: 1.40 g (66%); m.p.: 221–224°C (ethanol); IR: $\nu = 3100$ m, 2940 m, 1650 s, 1555 s, 1325 s, 1128 s cm⁻¹; ¹H NMR (200 MHz, δ , *DMSO*-d₆): 1.60 (s, 4H, 6-H, 7-H), 2.05 (s, 2H, 8-H), 2.50 (s,

2H, 5-H), 7.12–7.20 (m, 2H, aryl-H), 7.44–7.51 (m, 3H, aryl-H), 7.68 (d, *J* = 8 Hz, 2H, phenyl 3-H, 5-H), 8.01 (d, *J* = 8 Hz, 2H, phenyl 2-H, 6-H) ppm.

4-Hydroxy-3-((2,4,5-trichlorophenylsulfonyl)-1-phenyl-5,6,7,8-tetrahydro-2(1H)-quinolone (**15c**; C₂₁H₁₆Cl₃NO₄S)

A solution of 1.13 g 7e (2.5 mmol) in 20 cm³ acetic acid and 2 cm³ of peracetic acid (40%) was stirred for 2 h at 50°C. After standing overnight at room temperature, the solution was diluted with water and the formed precipitate was filtered by suction.

Yield: 0.86 g (71%); m.p.: 220–221°C (ethanol).

References

- [1] Rayner CM (1994) Contemp Org Synthesis (Royal Society London), vol 1, pp 191-204 (review)
- [2] Kita Y, Takada T, Mihara S, Whelan BA, Tohma H (1995) J Org Chem 60: 7144
- [3] Mukaiyama T, Suzuki K (1993) Chem Lett 1
- [4] Feuer A, Severin T (1993) Tetrahedron Lett 34: 2103
- [5] Kaminski JJ, Solomon DM, Conn DJ, Wong S-C, Chiu PS, Massa T, Siegel MI, Whatnik AS (1989) J Med Chem 32: 1118
- [6] Prasad JVNV, Lunney EA, Ferguson D, Tummino PJ, Rubin JR, Reyner EL, Stewart BH, Guttendorf RJ, Domagala JM, Suvorov LI, Gulnik SV, Topol IA, Bhat TN, Erickson JW (1995) J Am Chem Soc 117: 11070
- [7] Ramirez MI, Garey D, Pena MR (1995) J Heterocyclic Chem 32: 1657
- [8] Para KS, Ellsworth EL, Prasad JVNV (1994) J Heterocyclic Chem 31: 1619
- [9] The Merck Index (1996) 12th edn, Merck & Co Inc, Whitehouse Station, NJ, No 3428, p 3426
- [10] The Merck Index (1996) 12th edn, Merck & Co Inc, Whitehouse Station, NJ, No 9510, p 9513
- [11] Kappe T, Schnell B, Georgieva K, Jocham B, Mayrhofer AE, Nikam BP, Issac Y, Langhans K (1994) Phosphorus, Sulfur and Silicon 95/96: 349–350
- [12] Langhans K (1999) Dissertation, University of Graz, Austria
- [13] Neilands OY, Sudmale I, Schnell B, Georgieva K, Kappe T (1998) J Heterocyclic Chem 35: 157
- [14] Ziegler E, Belegratis K, Brus G (1967) Monatsh Chem 98: 555
- [15] Aigner R (1990) Dissertation, University of Graz, Austria, pp 92-111
- [16] Tschitschibabin AE (1924) Ber Dtsch Chem Ges 57: 1168
- [17] Katritzky AR, Waring AJ (1962) J Chem Soc (London) 1544; Katritzky AR, Popp FD, Waring AJ (1966) J Chem Soc (London) B 565
- [18] Kappe T (1984) Lect Heterocyclic Chem 7: 107
- [19] Kappe T, Schnell B (1996) J Heterocyclic Chem 33: 663

Received March 25, 1999. Accepted April 7, 1999